Faculty of Actuarial Science and Statistics Automatic, Computer Aided Geometric Design of Free- Knot, Regression Splines

نویسندگان

  • Vladimir K. Kaishev
  • Dimitrina S. Dimitrova
  • Steven Haberman
  • Richard Verrall
چکیده

A new algorithm for Computer Aided Geometric Design of least squares (LS) splines with variable knots, named GeDS, is presented. It is based on interpreting functional spline regression as a parametric B-spline curve, and on using the shape preserving property of its control polygon. The GeDS algorithm includes two major stages. For the first stage, an automatic adaptive, knot location algorithm is developed. By adding knots, one at a time, it sequentially "breaks" a straight line segment into pieces in order to construct a linear LS B-spline fit, which captures the "shape" of the data. A stopping rule is applied which avoids both over and under fitting and selects the number of knots for the second stage of GeDS, in which smoother, higher order (quadratic, cubic, etc.) fits are generated. The knots appropriate for the second stage are determined, according to a new knot location method, called the averaging method. It approximately preserves the linear precision property of B-spline curves and allows the attachment of smooth higher order LS B-spline fits to a control polygon, so that the shape of the linear polygon of stage one is followed. The GeDS method produces simultaneously linear, quadratic, cubic (and possibly higher order) spline fits with one and the same number of B-spline regression functions. The GeDS algorithm is very fast, since no deterministic or stochastic knot insertion/deletion and relocation search strategies are involved, neither in the first nor the second stage. Extensive numerical examples are provided, illustrating the performance of GeDS and the quality of the resulting LS spline fits. The GeDS procedure is compared with other existing variable knot spline methods and smoothing techniques, such as SARS, HAS, MDL, AGS methods and is shown to produce models with fewer parameters but with similar goodness of fit characteristics, and visual quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the B-spline basis via knot insertion

We derive the stability inequality ‖C‖ 6 γ ‖∑i cibi‖ for the B-splines bi from the formula for knot insertion. The key observation is that knot removal increases the norm of the B-spline coefficients C = {ci}i∈Z at most by a constant factor, which is independent of the knot sequence. As a consequence, stability for splines follows from the stability of the Bernstein basis.  2000 Elsevier Scien...

متن کامل

Splines and unsorted knot sequences

The definition of a B-spline is extended to unordered knot sequences. The added flexibility implies that the resulting piecewise polynomials, named U-splines, can be negative and locally linearly dependent. It is therefore remarkable that linear combinations of U-splines retain many properties of splines in B-spline form including smoothness, polynomial reproduction, and evaluation by recurrence.

متن کامل

Nonuniform web-splines

The construction of weighted extended B-splines (web-splines), as recently introduced by the authors and J. Wipper for uniform knot sequences, is generalized to the nonuniform case. We show that web-splines form a stable basis for splines on arbitrary domains in R which provides optimal approximation power. Moreover, homogeneous boundary conditions, as encountered frequently in finite element a...

متن کامل

Non-uniform subdivision for B-splines of arbitrary degree

We present an efficient algorithm for subdividing non-uniform B-splines of arbitrary degree in a manner similar to the Lane-Riesenfeld subdivision algorithm for uniform Bsplines of arbitrary degree. Our algorithm consists of doubling the control points followed by d rounds of non-uniform averaging similar to the d rounds of uniform averaging in the Lane-Riesenfeld algorithm for uniform B-spline...

متن کامل

Knot intervals and multi-degree splines

This paper studies the merits of using knot interval notation for B-spline curves, and presents formulae in terms of knot intervals for common B-spline operations such as knot insertion, differentiation, and degree elevation. Using knot interval notation, the paper introduces MD-splines, which are B-spline-like curves that are comprised of polynomial segments of various degrees (MD stands for “...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004